1/(t+1)+9/(t+3)=2/(t^2+4t+3)

Simple and best practice solution for 1/(t+1)+9/(t+3)=2/(t^2+4t+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/(t+1)+9/(t+3)=2/(t^2+4t+3) equation:


D( t )

t^2+4*t+3 = 0

t+3 = 0

t+1 = 0

t^2+4*t+3 = 0

t^2+4*t+3 = 0

t^2+4*t+3 = 0

DELTA = 4^2-(1*3*4)

DELTA = 4

DELTA > 0

t = (4^(1/2)-4)/(1*2) or t = (-4^(1/2)-4)/(1*2)

t = -1 or t = -3

t+3 = 0

t+3 = 0

t+3 = 0 // - 3

t = -3

t+1 = 0

t+1 = 0

t+1 = 0 // - 1

t = -1

t in (-oo:-3) U (-3:-1) U (-1:+oo)

1/(t+1)+9/(t+3) = 2/(t^2+4*t+3) // - 2/(t^2+4*t+3)

1/(t+1)+9/(t+3)-(2/(t^2+4*t+3)) = 0

1/(t+1)+9/(t+3)-2*(t^2+4*t+3)^-1 = 0

1/(t+1)+9/(t+3)-2/(t^2+4*t+3) = 0

t^2+4*t+3 = 0

t^2+4*t+3 = 0

t^2+4*t+3 = 0

DELTA = 4^2-(1*3*4)

DELTA = 4

DELTA > 0

t = (4^(1/2)-4)/(1*2) or t = (-4^(1/2)-4)/(1*2)

t = -1 or t = -3

(t+3)*(t+1) = 0

1/(t+1)+9/(t+3)-2/((t+3)*(t+1)) = 0

(1*(t+3))/((t+1)*(t+3))+(9*(t+1))/((t+1)*(t+3))-2/((t+1)*(t+3)) = 0

1*(t+3)+9*(t+1)-2 = 0

10*t-2+12 = 0

10*t+10 = 0

(10*t+10)/((t+1)*(t+3)) = 0

(10*t+10)/((t+1)*(t+3)) = 0 // * (t+1)*(t+3)

10*t+10 = 0

10*t+10 = 0 // - 10

10*t = -10 // : 10

t = -10/10

t = -1

t in { -1}

t belongs to the empty set

See similar equations:

| 5-y=-2x | | N^6-9x^2y^2=0 | | (8x4-2x2)/(2x2) | | 1/(x+3)+9/(x+6)=3/(x^2+9x+18) | | 25-3w=2w | | 4x-284=5x-14 | | N^4-4x^2y^2=0 | | 4x+13=89 | | 10x-(21-4x)=-11(5-2x) | | 2x^3-4x^2-11x+17=0 | | 3/4=x/28 | | x+(x-22.5)=193.1 | | 177-4X=23X+18 | | 136-6x=3x+11 | | -(3y)/7=78 | | 24/x=8/5 | | 5x-1=14x+2x | | 93-3X=3X+25 | | -x+1=4 | | P=r+s-8 | | -2(4x-3)= | | 8(w-2)=10w-6 | | 132-7x=29x+16 | | 0.94x+0.98(8-x)=7.68 | | 9+3/2 | | 5x+39=14x-19 | | 2b^2+2b-12=0 | | -4+x=3 | | 2x+(x/2)+x=70 | | 4x^4-43x^2-9x+90=0 | | 5x(2x-4)=10(9-2x) | | 5y^2-17y+6=0 |

Equations solver categories